Программа рассмотрена на заседании педагогического совета от «30» августа 2024 г., протокол № 1

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«РОБОТОТЕХНИКА» (базовый уровень)

> Направленность –Технологическая Объём – 72 Срок реализации программы – 36 недель Возраст обучающихся – 11-17 лет

Разработчик — Савинов Владислав Александрович, педагог дополнительного образования МОУ «Тавровская СОШ»

С. Таврово, 2024

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОГРАММЫ

Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» (далее программа) имеет технологическую направленность. Уровень программы - *базовый*, обеспечивает общую трансляцию содержательно-тематического направления программы.

Программа реализуется в соответствии с нормативно-правовой документацией, действующей в рамках «Положения о дополнительной общеобразовательной общеразвивающей программе МОУ «Тавровская СОШ», утвержденного приказом № 154 от 30.03.2023 года.

Актуальность программы

Актуальность курса заключается в том, что он направлен на формирование творческой личности живущей в современном мире. Технологические наборы LEGO MINDSTORMS ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств.

Отличительные особенности программы в том, что она программа предполагает использование конструкторов нового поколения LEGO MINDSTORMS, как инструмента для обучения детей конструированию и моделированию.

Педагогическая целесообразность обусловлена тем, что программа способствует подъему естественно научного мировоззрения и отвечает запросам различных социальных групп нашего общества, обеспечивает совершенствование процесса развития и воспитания детей.

Адресат программы

Объем программы и срок освоения программы

Общее количество часов, запланированных на весь год составляет: 72 часа. Число занятий в неделю 1 раз по 2 часа. Срок реализации программы -1 год.

Формы, периодичность, продолжительность и режим занятий

Форма обучения – очная, групповая.

Количество обучающихся: до 20 человек

Продолжительность занятий в день 2 часа по 45 минут, предусмотрены перерывы - 15 минут в конце каждого часа.

Цель программы: Создание условий для изучения основ алгоритмизации и программирования с использованием робота Lego Mindstorms NXT, развитие научно-технического и творческого потенциала личности ребенка путем организации его деятельности в процессе интеграции начального инженерно-технического конструирования и основ робототехники.

Задачи:

Обучающие:

- 1. дать первоначальные знания о конструкции робототехнических устройств;
- 2. научить приемам сборки и программирования робототехнических устройств;
- 3. сформировать общенаучные и технологические навыки конструирования и проектирования;
 - 4. ознакомить с правилами безопасной работы с инструментами

Воспитывающие:

- 1. формировать творческое отношение к выполняемой работе;
- 2. воспитывать умение работать в коллективе, эффективно распределять обязанности.

Развивающие:

- 1. развить творческую инициативу и самостоятельность;
- 2. развить психофизиологические качества учеников: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном;
- 3. развить умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Планируемые результаты освоения программы

В результате обучения у обучающихся основной школы будут сформированы личностные, познавательные, коммуникативные и регулятивные универсальные учебные действия как основа учебного сотрудничества и умения учиться в общении.

Обучающиеся будут знать:

- понимать и принимать учебную задачу, сформулированную учителем;
- планировать свои действия на отдельных этапах работы над роботом и программой;
- осуществлять контроль, коррекцию и оценку результатов своей деятельности;
- анализировать причины успеха/неуспеха, осваивать с помощью учителя позитивные установки типа: «У меня всё получится», «Я ещё многое смогу».

Обучающиеся будут уметь:

- пользоваться приёмами анализа и синтеза при просмотре видеозаписей, проводить сравнение и анализ современного и будущего применения роботов;
- понимать и применять полученную информацию при выполнении заданий;
- проявлять индивидуальные творческие способности при конструировании и программировании.

Обучающийся научится:

- включаться в диалог, в коллективное обсуждение, проявлять инициативу и активность;
- работать в группе, учитывать мнения партнёров, отличные от собственных;
 - обращаться за помощью;
 - формулировать свои затруднения;
 - предлагать помощь и сотрудничество;
 - осуществлять взаимный контроль;
- адекватно оценивать собственное поведение и поведение окружающих.

Учебный план

No	Название раздела, темы	Кол-во часов Формы			
	пиоринне риздени, темъг	всего	теория	практика	аттестаци
		Beero	ТСОРИИ	- puri	ии
					контроля
1	Введение (9 часов)				110111 00111
1.1	Цели и задачи курса.	9	5	4	Входной
	Графическая среда для				контроль
	разработки программ для				1
	спортивных робототехнических				
	систем – NXT				
2	Базовые основы прогр	аммир	ования ро	ботов (21ча	ic)
	Сборка первой модели робота	5	2	3	
	Разработка простейшей	2	1	1	
	программы (несколько коротких				
	заданий)				
	Тестирование простейших	4	2	2	
	программ				
	Разработка программ для	4	2	2	
	выполнения поставленной				
	задачи (несколько коротких				
	блоков)				
	Регулировка программ	3		3	
	Тестирование программ из 4-5	2		2	
	блоков				
3	Соревновательная	и робототехника (42 часа)			
	Всемирные соревнования по	4	4		Рубежный
	образовательной робототехнике				контроль
	Регламент и правила судейства	4	2	2	
	на соревнованиях по				
	образовательной робототехнике				
	Алгоритмы программирования	8	4	4	
	простых и сложных роботов				

Управление роботом с помощью	10	4	6	
ноутбука				
Самостоятельная сборка робота,	10	2	8	
составление программы для				
управления роботом				
Соревнования роботов	5		5	
Итоговое занятие	1	1		Итоговый
				контроль
Всего	72	29	43	_

Содержание

1 раздел «Введение.» (9 часов)

Этот раздел для тех, кто начинает работать с графической средой разработки программ для спортивных робототехнических систем – NXT.

Лекция. Цели и задачи курса. Ролики, фотографии и мультимедиа. Рассказ о соревнованиях роботов: Евробот, фестиваль мобильных роботов, олимпиады роботов. Спортивная робототехника. В ч.т. — бои роботов (неразрушающие). Конструкторы и «самодельные» роботы. Основы программирования соревновательной робототехники.

Оборудование проекта «Точки роста, используемое на занятиях: конструктор программируемых моделей инженерных систем, контроллер КПМИС, светодиод, программно-управляемый светодиод, потенциометр, макетная плата, пьезодинамик, резистор на 220 В, фоторезистор, резистор на 10 кОм, провода, светодиодная шкала на 10 светодиодов, таковая кнопка, пьезопищалка.

2 раздел «Базовые основы программирования роботов» (11 часов)

Собираем первую модель робота по инструкции. Разработка программ для выполнения поставленных задачи: несколько коротких заданий. Количество блоков в программах более 5 штук. Загружаем готовые программы управления роботом, тестируем их, выявляем сильные и слабые стороны программ, а также регулируем параметры, при которых программы работают без ошибок. Разработка программ для выполнения поставленных задач: несколько коротких из 4-5 блоков.

Оборудование проекта «Точки роста, используемое на занятиях: конструктор программируемых моделей инженерных систем, семисегментный индикатор, термистр, дисплей, LCD-дисплей, светопривод MG 966, сетевой адаптер, шаговый двигатель, драйвер на шаговый двигатель, DC-мотор, плата расширенная Motor Shield, цифровой ИК-датчик, ИК — приемник, Bluetooth — модуль, УЗ-сенсор SR-04.

3 раздел «Соревновательная робототехника» (14 часов)

Нам необходимо ознакомиться с алгоритмами программирования простых и сложных роботов, которые используются на всемирных соревнованиях по образовательной робототехнике. Необходимо ознакомится с регламентами и правилом судейства по всем категориям используемых на

соревнованиях по образовательной робототехнике. Тестируем собранного робота. Управляем им с ноутбука/нетбука. Устраиваем соревнования. Не разбираем конструкцию победителя. Необходимо изучить конструкции и выявить плюсы и минусы робота.

Задача учеников самостоятельно найти и смастерить конструкцию робота, которая сможет выполнять задания соревнований. Все задания раскрываем по частям, например, нужно передвигаться из точки А в точку Б - это будет первая задача, нужно определять цвет каждой ячейки - это вторая задача, в зависимости от цвета ячейки нужно выкладывать определённое количество шариков в ячейку - это третья задача Цель: Сформировать задачу на разработку проекта группе учеников. На уроке мы делим всех учеников на группы по 2-3 человека.

Оборудование проекта «Точки роста», используемое на занятиях: конструктор программируемых моделей инженерных систем, семисегментный индикатор, термистр, дисплей, LCD-дисплей, светопривод MG 966, сетевой адаптер, шаговый двигатель, драйвер на шаговый двигатель, DC-мотор, плата расширенная Motor Shield, цифровой ИК-датчик, ИК – приемник, Bluetooth – модуль, У3-сенсор SR-04, контроллер КПМИС, светодиод, программно-управляемый светодиод, потенциометр, макетная плата, пьезодинамик, резистор на 220 В, фоторезистор, резистор на 10 кОм, провода, светодиодная шкала на 10 светодиодов, таковая пьезопищалка..

В течение всего года подготовка к школьным, городским, областным, региональным, всероссийским и всемирным соревнованиям по образовательной робототехнике.

2.ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ

Формы аттестации

Вид контроля	Время проведения	Цель проведения	Формы проведения
Стартовый контроль (входная диагностика)	сентябрь	Определение исходного уровня подготовки обучающихся	Беседа, тестирование.
Текущий	В течение	Определение степени усвоения	Педагогическое
контроль	всего	обучающимися учебного материала.	наблюдение,
	учебного	Определение готовности обучающихся к	Практикум по
	года	восприятию нового материала.	задачам
		Выявление детей, отстающих и	
		опережающих обучение.	
Промежуточная	апрель-май	Определение	Тестирование,
аттестация в		уровня развития обучающихся, их	проектная работа
конце года		творческих способностей.	

Оценочные материалы

Тесты позволяют определить достижение обучающихся к планируемым результатам обучения по программе. Тесты разрабатываются педагогом самостоятельно и содержат вопросы по темам и разделам освоенного объема программы.

Оценка освоения программного материала

Степень усвоения программы оценивается по нескольким критериям:

- ★ теоретические знания (система тестовых заданий, разработанных с учетом возрастных особенностей);
- практические умения и навыки (задания, позволяющие выявить уровень освоения программы, определение уровня умений и навыков, сформированных в период обучения по программе).

Форма оценки – баллы. Показатели усвоения образовательной программы:

- 8-10 баллов высокий уровень обученности (80-100%);
- 5-7 баллов средний уровень обученности (50-79%);
- 1-4 баллов низкий уровень обученности (20-49%).

Высокий уровень — программный материал усвоен обучающимися полностью: точное знание терминологии, содержания разделов программы, практические навыки и умения сформированы.

Средний уровень — неполное владение теоретическими знаниями, терминами, практические навыки и умения сформированы не в полном объёме.

Низкий уровень — слабое усвоение теоретического и практического программного материала, низкая сформированность практических навыков и умений.

Календарный учебный график объединения «Робототехника» ДООП «Робототехника»

Начало учебного года: 02.09.2024 года; **Окончание учебного года**: 31.05.2025 года;

Расчетная продолжительность учебного года: 36 недель.

№ группы	Дни недели	Время проведения занятий
1.	Вторник	14.30-16.30

Методические материалы **Ф**ормы

Форма образовательной деятельности — групповые учебные занятия, в процессе которых осуществляется индивидуализация обучения и применение дифференцированного подхода к обучающимся.

Занятия имеют интегрированный характер: проектирование, беседы, лекции, репетиции, творческая мастерская, практическая работа, тесты.

Методы обучения и воспитания

- словесные методы (беседа, анализ деятельности и творческого продукта и др.). Словесные методы обучения становятся ведущими на занятиях, где происходит «открытие» новых знаний, изучение нового материала;
- метод анализа деятельности и творческого продукта применяется при оценке и рефлексии процесса и результата;
- наглядные методы (показ видеоматериалов, показ педагогом приемов исполнения, наблюдение, работа по образцу, просмотр презентаций и др.);
 - практические методы (конкурсы, игры)

Средства, приёмы

- 1. видео фонотека сборник видео материала. Демонстрация видео материала на уроке.
 - 2. Дидактические разработки Схемы, карточки.
 - 3.Выразительные средства:
 - наглядно-демонстрационные материалы на цифровых носителях.

Педагогические образовательные технологии обучения и воспитания

- В соответствии с возрастными и индивидуальными особенностями обучения, на занятиях используются современные педагогические образовательные технологии:
- использование ноутбуков проекта "Точка Роста" при подготовке и защите проектов.

Условия реализации программы

Материально - техническое обеспечение программы		
Перечень технических средств обучения	1. Компьютер (ноутбук) с доступом к	
	Интернету – 1 шт.	
	2. Телевизор	
Перечень материалов, необходимых для занятий	Использование оборудования	
	«Точки роста»	

Список литературы

- 1. Копосов Д.Г. Первый шаг в робототехнику. Рактикум для 5-6 классов\Д.Г. Копосов. М: БИНОМ. Лаборатория знаний, 2012 292 с.
- 2. Блог-сообщество любителей роботов Лего с примерами программ [Электронный ресурс] /http://blogspot.ru/2010/11/blog-post_21.html
- 3. Лабораторный практикум по программированию [Электронный ресурс] / http://www.edu.holit.ua/index.php?option=com
- 4. Образовательная программа «Введение в конструирование роботов» и графический язык программирования роботов [Электронный ресурс] / Режим доступа: http://www.nxtprograms.com/index2.html
 - 5. Материалы сайта: http://prorobot.ru/lego.php